重要提示:请勿将账号共享给其他人使用,违者账号将被封禁!
查看《购买须知》>>>
首页 > 建筑工程类考试> 监理工程师
网友您好,请在下方输入框内输入要搜索的题目:
搜题
拍照、语音搜题,请扫码进入小程序
扫一扫 进入小程序
题目内容 (请给出正确答案)
[主观题]

是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项

是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项是n维线性空间V上的线性变换,证明:

1)若是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项在V的某基下矩阵A是某多项式d(λ)的友矩阵,则是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项的最小多项式是d(λ);

2)设是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项的最高次的不变因子是d(λ),则是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项的最小多项式是d(λ)。

答案
查看答案
更多“是n维线性空间V上的线性变换,证明:1)若在V的某基下矩阵A是某多项式d(λ)的友矩阵,则的最小多项”相关的问题

第1题

设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2)

设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2是数域P上n维线性空间V的一个线性变换,证明:

1)在P[x]中有一次数≤n2的多项式f(x),使设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2

2)如果设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2,那么设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2这里d(x)是f(x)与g(x)的最大公因式;

3)设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2可逆的充分必要条件是,有一常数项不为零的多项式f(x)使设是数域P上n维线性空间V的一个线性变换,证明:1)在P[x]中有一次数≤n2的多项式f(x),使2

点击查看答案

第2题

设σ是数域F上n维向量空间V的一个可以对角化的线性变换。令λ1,λ2,···,λt是σ的全部本
征值。证明,存在V的线性变换σ1,σ2,···,σt,使得

设σ是数域F上n维向量空间V的一个可以对角化的线性变换。令λ1,λ2,···,λt是σ的全部本征值。

点击查看答案

第3题

设f是数域F上有限维向量空间V上一个大退化内积。g:VxV→F是F上另一个内积,证明存在V的唯一的线性变换σ,使得对于一切α,β∈V,都有g(α,β)=f(σ(α),β)。证明:g是非退化的当且仅当σ是非奇异线性变换。

点击查看答案

第4题

设σ是有限维向量空间V的一个线性变换,而W是σ的一个不变子空间,证明,如果σ有逆变换,那么W也在σ-1之下不变。

点击查看答案

第5题

设f是数域F上有限维向量空间V的一个非退化内积,φ:V→F是V上一个线性函数。证明存在唯一的向量α∈V,使得对于任意β∈V来说,都有φ(B)=f(α,β)。
设f是数域F上有限维向量空间V的一个非退化内积,φ:V→F是V上一个线性函数。证明存在唯一的向量α∈V,使得对于任意β∈V来说,都有φ(B)=f(α,β)。

点击查看答案

第6题

(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪

(I)求复数域上线性空间V的线性变换(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪的特征值与特征向量,已知(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪在一组基下的矩阵为:

(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪

(I)求复数域上线性空间V的线性变换的特征值与特征向量,已知在一组基下的矩阵为:(II)在(I)中哪

(II)在(I)中哪些变换的矩阵可以在适当的基下化成对角形?在可以化成对角形的情况,写出相应的基变换的过渡矩阵T,并验算T-1AT。

点击查看答案

第7题

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是

令V是实数域R上一个三维向量空间,σ是V的一个线性变换。它关于V的某一个基的矩阵是(i)求出σ的最令

(i)求出σ的最小多项式p(x),并把p(x)在R[x]内分解为两个最高次项系数是1的不可约多项式p1(x)与p2(x)的乘积;

(ii)令Wi={ξ∈V|pi(σ)ξ=0},i=1,2。证明,Wi是σ的不变子空间,并且V=W1⊕W2;

(iii)在每一子空间Wi中选取一个基,凑成V的一个基,使得σ关于这个基的矩阵里只出现三个非零元素。

点击查看答案

第8题

设A,B为数域P上的m×n与n×s矩阵,又W={Bα|ABα=0,α为P的s维列向量,即α∈Ps×1是n维列向量空间Pn×1的子空间,证明:dimW=r(B)-r(AB)。

点击查看答案

第9题

设σ是n维欧氏空间V的一个对称变换,且σ2=σ。证明存在V的一个规范正交基,使得σ关于这个基的
矩阵有形状

设σ是n维欧氏空间V的一个对称变换,且σ2=σ。证明存在V的一个规范正交基,使得σ关于这个基的矩阵有

点击查看答案

第10题

设是欧氏空间V的一个变换。证明:如果保持内积不变,即对于α,β∈V,,那么它一定是线性的,因而它是正

设是欧氏空间V的一个变换。证明:如果保持内积不变,即对于α,β∈V,,那么它一定是线性的,因而它是正是欧氏空间V的一个变换。证明:如果设是欧氏空间V的一个变换。证明:如果保持内积不变,即对于α,β∈V,,那么它一定是线性的,因而它是正保持内积不变,即对于α,β∈V,设是欧氏空间V的一个变换。证明:如果保持内积不变,即对于α,β∈V,,那么它一定是线性的,因而它是正,那么它一定是线性的,因而它是正交变换。

点击查看答案
  • 语音搜题
    扫一扫 进入小程序
  • 拍照搜题
    扫一扫 进入小程序
TOP
重置密码
账号:
旧密码:
新密码:
确认密码:
确认修改
购买搜题卡查看答案
购买前请仔细阅读《购买须知》
请选择支付方式
微信支付
支付宝支付
点击支付即表示你同意并接受《服务协议》《购买须知》
立即支付
搜题卡使用说明

1. 搜题次数扣减规则:

备注:网站、APP、小程序均支持文字搜题、查看答案;语音搜题、单题拍照识别、整页拍照识别仅APP、小程序支持。

2. 使用语音搜索、拍照搜索等AI功能需安装APP(或打开微信小程序)。

3. 搜题卡过期将作废,不支持退款,请在有效期内使用完毕。

请使用微信扫码支付(元)

订单号:

遇到问题请联系在线客服

请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系在线客服
恭喜您,购买搜题卡成功 系统为您生成的账号密码如下:
重要提示:请勿将账号共享给其他人使用,违者账号将被封禁。
发送账号到微信 保存账号查看答案
怕账号密码记不住?建议关注微信公众号绑定微信,开通微信扫码登录功能
请用微信扫码测试
作业在线